Synthesis and Structural Characterization of Bis(2-oxoimidazolyl)hydroborato Complexes: A New Class of Bidentate Oxygen-Donor Ligands

Ahmed Al-Harbi, Yi Rong, and Gerard Parkin*

Department of Chemistry, Columbia University, New Yo[rk,](#page-2-0) New York 10027, United States

S Supporting Information

[AB](#page-2-0)STRACT: [A](#page-2-0) [new](#page-2-0) [class](#page-2-0) [o](#page-2-0)f bidentate ligands that feature oxygen donors, namely, the bis(2-oxo-1-tert-butylimidazolyl)hydroborato and bis(2-oxo-1-methylbenzimidazolyl) hydroborato ligands, $[Bo^{Buⁱ}]$ and $[Bo^{Meßenz}]$, have been synthesized via the reactions of $MBH₄$ with 2 equiv of the $\overline{\text{respective}}$ 2-imidazolone. Chelation of $[\overline{\text{Bo}}^{\text{Bu}^*}]$ and [Bo^{MeBenz}] to a metal center results in a flexible eightmembered ring that is capable of adopting a "boatlike" conformation that allows for secondary M···H−B interactions.

B identate $[O_2]$ donor ligands that belong to the X_2 , LX, and L_2 covalent bond classifications¹ are known for a variety of extendence for a variety of systems. For example, κ^2 -carboxylate and κ^2 -acetylacetonate are two commonly encountered LX do[no](#page-2-0)r ligands that respectively result in four- and six-membered rings upon coordination. Here, we introduce a new class of $[O_2]$ LX donor ligands that incorporate oxoimidazolyl moieties and create an eightmembered chelate ring.

We have previously described the construction of bis- $(mercaptoimidazolyl)$ hydroborato $[Bm^R]$ ² and bis- $\text{(selenoimidazolyl)}$ hydroborato $\text{[Bse}^{R}]^{3}$ ligands that respectively feature $[S_2]$ and $[Se_2]$ donor arrays, of whi[ch](#page-2-0) the former has found widespread applications.^{4−6} [W](#page-2-0)e have now extended this series of chalcogen donor ligands to that of the lightest member and report here the sy[nthe](#page-2-0)sis of the $[O_2]$ donor counterpart, namely, the bis(oxoimidazolyl) ligand system, [Bo^R] (Scheme 1). Specifically, $[Bo^{Bu'^t}]M(M = LI, Na)$ and $\sqrt{[Bo^{MeBenz}]}$ Na may be obtained by the reactions of MBH₄ (M = Li, Na) with 2 equiv of the respective 2-imidazolone (Scheme 1), an approach that is a modification of the method used for the synthesis of tris(oxoimidazolyl)hydroborato ligands.⁷

The molecular structures of several of these derivatives, namely, mononuclear $[Bo^{Bu'}]Na(\mathrm{diglyme})$ $[Bo^{Bu'}]Na(\mathrm{diglyme})$ $[Bo^{Bu'}]Na(\mathrm{diglyme})$ and dinuclear $\{[Bo^{Bu'}]Li\}_2, \{[Bo^{Bu'}]Na\}_2(diglyme)$, and $\{[Bo^{MeBenz}]Na (diglyme)$ ₂, have been determined by X-ray diffraction. In all compounds, the $[Bo^R]$ ligands chelate to the metal, forming an eight-membered ring; $\overset{8}{\ }$ for the dinuclear compounds, one of the oxygen atoms also serves as a bridge between the two metal centers, thereby resu[lti](#page-2-0)ng in an $[M_2O_2]$ core.⁹

The alkali-metal complexes, $[Bo^R]M$, are useful ligandtransfer reagents for the synthesis of othe[r](#page-2-0) derivatives. For example, the treatment of $\{[Bo^{Bu'}]Li\}_2$ with TlOAc gives [Bo^{But}]Tl (Scheme 2), which has been structurally characterized by X-ray diffraction, as illustrated in Figure 1. Notably,

Scheme 2. Synthesis of $[Bo^R]M (M = TI, Cu, Zn)$ Derivatives

[Bo^{But}]Tl exists as a discrete mononuclear complex, in marked contrast to the dinuclear structure of the sulfur counterpart, $\{[\text{Bm}^{\text{Bu}^t}]\text{Tl}\}_2$, in which one of the sulfur atoms of the $[\text{Bm}^{\text{Bu}^t}]\}$ ligand bridges the two thallium centers.⁶ Furthermore, the methyl-substituted derivative ${[Bm^{Me}]}T1$ _∞ is polymeric with bridging mercaptoimidazolyl groups. 2a The coordination geometry of thallium in $[Bo^{Bu'}]$ Tl is also supplemented by a secondary Tl···H−B interaction, whic[h](#page-2-0) is associated with a

Received: June 28, 2013 Published: August 30, 2013

Scheme 1. Synthesis of $[Bo^R]M$ (M = Li, Na) Derivatives

Figure 1. Molecular structure of $\mathrm{[Bo^{Bu'}]}$ Tl.

"boatlike" conformation of the $[Bo^{Bu^t}]$ ligand that allows the B−H group to be in the proximity of the metal center. As such, the coordination geometry more resembles that of the bis(pyrazolyl)hydroborato counterparts, $[BP^R]TI¹⁰$ than that of $\{[Bm^R]Tl\}_{x}$. It is also pertinent to contrast the mononuclear structure of $[Bo^{Bu^t}]$ Tl with thallium(I) ace[ty](#page-2-0)lacetonate derivatives, Tl[acac^{R2}], which exhibit a variety of intermolecular interactions.¹¹

The zinc iodide compound, $\{[Bo^{MeBenz}]\text{ZnI}\}_2$, may be obtained via [th](#page-2-0)e reaction of $[Bo^{MeBenz}]$ Na with $ZnI₂$ (Scheme 2). The molecular structure of $\{[Bo^{MeBenz}]\text{ZnI}\}_2$ has been determined by X-ray diffraction, thereby demonstrating t[ha](#page-0-0)t the compound is dinuclear by virtue of an oxygen atom of each [Bo^{MeBenz}] ligand bridging the two zinc centers. Although this dinuclear structure is in marked contrast to that of the monomeric mercapto counterpart, $\mathrm{[Bm^{Me}]} \mathrm{ZnL}^{2a,b}$ it is similar to that of the selenium analogue, $\{[\mathsf{Bse}^{\mathsf{Me}}] \mathsf{ZnI}\}_2$. The overall coordination geometry about zinc can b[e de](#page-2-0)scribed as a trigonal bipyramid in which the axial sites are occu[pied](#page-2-0) by a bridging oxygen atom and a hydrogen of the 3-center-2 electron Zn…H–B interaction ($d_{Zn\cdots H} = 1.97$ Å and $d_{Zn\cdots B}$ = 2.85 Å).

The [Bo^{MeBenz}] ligand is also effective for coordinating gallium, including formation of a compound that features a Ga-Ga bond. Specifically, [Bo^{MeBenz}]Na reacts with (i) GaI₃ to give $\left[\text{Bo}^{\text{MeBenz}}\right]$ GaI₂ and (ii) "GaI"¹³ to give dinuclear ${\rm \widetilde{E}[Bo^{\text{MeBenz}}]Gal}_2$ (Scheme 3). The latter transformation is formally accompanied by disproporti[ona](#page-2-0)tion, in accordance with the previously reported reactivity of "GaI".^{4b,13}

The molecular structures of $[Bo^{MeBenz}]Gal_2$ and $\{[Bo^{MeBenz}]$ -GaI $\}$ ₂ (Figure 2) have been determined by X-ra[y di](#page-2-0)ffraction. A noteworthy feature of both structures is that the [Bo^{MeBenz}]Ga moieties adopt a "boatlike" conformation, whereas those for $\left[\text{Bm}^R\right]$ Ga in the mercapto counterparts, $\left[\text{Bm}^R\right]$ GaI₂ and $\{[\text{Bm}^{\bar{\text{R}}}] \text{Gal}\}_2$, are "chairlike".^{4b} Another notable difference between the structures of $\{[\text{Bo}^{\text{MeBenz}}]\text{Gal}\}_2$ and $\{[\text{Bm}^{\text{R}}]\text{Gal}\}_2$ is that, whereas the two $[Bm^R]GaI$ $[Bm^R]GaI$ $[Bm^R]GaI$ moieties of the latter adopt a trans conformation, the two $[Bo^{MeBenz}]Gal$ moieties adopt an approximately eclipsed conformation in which the I−Ga−Ga−O torsion angles are 18.9° and 20.8°. Furthermore, the I−Ga−Ga−I torsion angle is 101.9°, in contrast to a value of 180° for $\{[Bm^{R}]Gal\}_{2}^{45}$ Despite this conformational difference, however, the Ga–Ga bond length for $\{[Bo^{MeBenz}]\text{Gal}\}_2$ $[2.3995(6)$ Å] is compar[abl](#page-2-0)e to the values in the mercapto counterparts, $\{[\text{Bm}^{\text{Bu}'}]\text{Gal}\}_2$ [2.423(2) Å] and $\{[\text{Bm}^{\text{Me}}]\text{Gal}\}_2$ $[2.414(2)$ Å].^{4b}

Scheme 3. Synthesis of $[Bo^R]Ga$ Compounds

Figure 2. Molecular structure of $\{[Bo^{MeBenz}]\text{Gal}\}_2$.

Significantly, $[Bo^{MeBenz}]Gal_2$ and ${[Bo^{MeBenz}]}Gal_2$ can be interconverted. Thus, the Ga–Ga bond of {[Bo^{MeBenz}]GaI}₂ can be cleaved by I_2 to give $[Bo^{\text{MeBenz}}]Gal_2$, while $\{[Bo^{\text{MeBenz}}]Gal\}_2$ can be regenerated by the treatment of $\left[\text{Bo}^{\text{MeBenz}}\right]\text{Gal}_2$ with KC_8 (Scheme 3).

Finally, we note that not only is the $[Bo^R]$ ligand applicable to main-group chemistry, but it is also of use in transition-metal chemistry. For example, the treatment of [Bo^{MeBenz}]Na with $[Me₃PCuCl]₄$ yields $[Bo^{MeBenz}]Cu(PMe₃)$. The molecular structure of $[Bo^{MeBenz}]Cu(PMe₃)$ has been determined by X-ray diffraction, thereby demonstrating that the approximately trigonal-planar primary coordination sphere is supplemented by a Cu…H–B interaction ($d_{\text{Cu} \cdots H}$ = 1.81 Å and $d_{\text{Cu} \cdots B}$ = 2.78 Å) that is similar to that in the mercapto counterpart, [Bm^{MeBenz}]-Cu(PMe₃) ($d_{\text{Cu}\cdots\text{H}}$ = 1.90 Å and $d_{\text{Cu}\cdots\text{B}}$ = 2.75 Å).^{2c} The principal differences between the structures of [Bo^{MeBenz}]Cu- $(PMe₃)$ and $[Bm^{MeBenz}]Cu(PMe₃)$ are that (i) the $[O₂CuP]$ core deviates more from planarity than does the $[S_2CuP]$ core, as is evidenced by the respective sum of the E−Cu−E and E−Cu−P angles in $[Bo^{MeBenz}]$ Cu(PMe₃) (350.6°) and $[Bm^{MeBenz}]$ -Cu(PMe3) (355.8°), and (ii) the difference in the two P−Cu−O bond angles (15.3°) is considerably greater than the difference in the two P−Cu−S bond angles (2.0°). Neglecting the Cu…H-B interaction, coordination of the [Bo^{MeBenz}] ligand to copper in $[Bo^{MeBenz}]Cu(PMe₃)$ resembles that of the β -diketonate ligands in [acac^{R₂]}Cu(PR'₃),¹⁴ with both classes

having O−Cu−O bond angles that are close to 90°. The Cu−O bond lengths in $[Bo^{MeBenz}]Cu(PMe₃)$ $[2.017(2)$ Å and 2.073(2) Å] are, however, slightly longer than those of [acac^{R₂]}Cu(PR'₃), e.g., [acac^{(CF₃)₂]Cu(PMe₃) [1.990(8) Å and} $2.034(7)$ Å].¹⁴

A comparison of the structures of the $\{[Bo^R]M\}$ complexes allows several observations to be made: (i) the C−O bonds are only slightly longer than those of the respective oxoimidazole;¹⁵ (ii) in situations where one of the oxygen donors bridge two metal centers, the M−O_{bridge} bonds are slightly longer than the corresponding $M-O_{term}$ bonds; (iii) the eight-membered ring is flexible, a feature that allows the B−H moiety to adjust its position to accommodate a 3-center-2-electron M···H−B interaction if so required to supplement the bidentate $[O_2]$ coordination. For example, the M···B distances vary from 2.78 Å for $[Bo^{MeBenz}]Cu(PMe_3)$ to 3.41 Å for $[Bo^{Bu'}]T1$ (Table 1).

A simple gauge of the significance of these M···H−B interactions (Δd) can be obtained by comparing the M···B distance relative to the average terminal M–O distances, i.e., Δd = $d(M...B) - d(M-O_{term})$. On this basis, the most significant $M \cdot \cdot H - B$ interaction is for $[Bo^{MeBenz}]$ Cu(PMe₃) ($\Delta d = 0.73$ Å), while the least significant is for $[Bo^{\text{MeBenz}}]GaI_2$ ($\Delta d = 1.54$ Å). Indeed, the latter is to be expected because, in the absence of any interaction with the B−H group, the gallium centers of $[Bo^{MeBenz}]Gal₂$ are four-coordinate, a common situation for gallium.¹⁶

In summary, a new class of bidentate LX ligands that feature two oxygen donors, namely, $[Bo^R]$, have been synthesized via the respective reactions of $MBH₄$ with 2 equiv of 1-tertbutylimidazolone and 1-methyl-2-benzimidazolinone. The $[Bo^K]$ ligands are versatile and are able to coordinate to both main-group and transition metals. Unlike for related $[a\text{vac}^{\text{R}_2}]$ ligands, chelation of the [BoR] ligand results in the formation of a flexible eight-membered ring that is capable of adopting a "boatlike" conformation, thereby allowing for a range of secondary M···H−B interactions to accommodate the nature of the metal center.

■ ASSOCIATED CONTENT

6 Supporting Information

Experimental details, crystallographic data (CIFs), and Cartesian coordinates for geometry-optimized structures. This material is available free of charge via the Internet at http:// pubs.acs.org.

■ AUTHOR INFORMATION

[Correspond](http://pubs.acs.org)ing Author

*E-mail: parkin@columbia.edu.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the National Science Foundation (Grant CHE-1058987) for support of this research. A.A.-H. thanks the government of Saudi Arabia for a scholarship. Victoria Landry is thanked for assistance.

■ REFERENCES

(1) Green, M. L. H. J. Organomet. Chem. 1995, 500, 127−148.

(2) (a) Kimblin, C.; Bridgewater, B. M.; Hascall, T.; Parkin, G. J. Chem. Soc., Dalton Trans. 2000, 891−897. (b) Kimblin, C.; Hascall, T.; Parkin, G. Inorg. Chem. 1997, 36, 5680−5681. (c) Al-Harbi, A.; Rong, Y.; Parkin, G. Dalton Trans. 2013, 42, 11117−11127.

(3) (a) Landry, V. K.; Buccella, D.; Pang, K.; Parkin, G. Dalton Trans. 2007, 866−870. (b) Landry, V. K.; Parkin, G. Polyhedron 2007, 26, 4751−4757.

(4) (a) Kimblin, C.; Bridgewater, B. M.; Hascall, T.; Parkin, G. Dalton Trans. 2000, 1267−1274. (b) Yurkerwich, K.; Coleman, F.; Parkin, G. Dalton Trans. 2010, 39, 6939−6942.

(5) See, for example, ref 2c, references cited therein.

(6) Alvarez, H. M.; Gillespie, P. A.; Gause, C. D.; Rheingold, A. L.; Golen, J. A.; Rabinovich, D. Polyhedron 2004, 23, 617−622.

(7) Al-Harbi, A.; Sattler, W.; Sattler, A.; Parkin, G. Chem. Commun. 2011, 47, 3123−3125.

(8) For other examples of LX $[O_2]$ donor ligands that form eightmembered rings, see: (a) Pettinari, C.; Marchetti, F.; Pettinari, R.; Martini, D.; Drozdov, A.; Troyanov, S. J. Chem. Soc., Dalton Trans. 2001, 1790−1797. (b) Tsai, C. Y.; Li, C. Y.; Lin, C. H.; Huang, B. H.; Ko, B. T. Inorg. Chem. Commun. 2011, 14, 271−275.

(9) This type of bridging mode has been observed previously in [Bm^R] systems. See, for example, ref 2.

(10) (a) Dowling, C.; Ghosh, P.; Parkin, G. Polyhedron 1997, 16, 3469−3473. (b) Ghosh, P.; Rheingold, A. L.; Parkin, G. Inorg. Chem. 1999, 38, 5464−5467. (c) Fillebeen, T.; Hascall, T.; Parkin, G. Inorg. Chem. 1997, 36, 3787−3790.

(11) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Pérez, J. Organometallics 2004, 23, 774−782, and references cited therein.

(12) An interesting difference between the structures of $\{[\mathrm{Bo}^{\mathrm{MeBenz}}]$ ZnI}₂ and {[Bse^{Me}]ZnI}₂ is that the two pairs of Zn−O bond lengths pertaining to the $[Zn_2O_2]$ core of $\{[Bo^{\text{MeBenz}}]ZnI\}_2$ $[2.008(2)$ and 2.201(2) Å; Δ = 0.193 Å] are much more similar than the two pairs of Zn–Se bond lengths in $\{[Bse^{Me}]\text{ZnI}\}_2$ [2.452(1) and 2.826(1) Å; Δ = 0.374 Å].^{3a} This trend is in accordance with density functional theory calculations on $\{[Bo^{MeBenz}]\text{ZnI}\}_2$ (0.083 Å, average value) and ${[\text{Bse}^{\text{Me}}] \text{ZnI}^2_2 \text{ (0.415 Å, average value)}$.

(13) Baker, R. J.; Jones, C. Dalton Trans. 2005, 1341−1348.

(14) See, for example: Shin, H. K.; Chi, K. M.; Farkas, J.; Hampden-Smith, M. J.; Kodas, T. T.; Duesler, E. N. Inorg. Chem. 1992, 31, 424− 431.

(15) Rong, Y.; Al-Harbi, A.; Kriegel, B.; Parkin, G. Inorg. Chem. 2013, 52, 7172−7182.

(16) Hutchison, A. R.; Mitra, A.; Atwood, D. A. Main Group Chem. 2005, 4, 187−200.