Inorganic Chemistry

Synthesis and Structural Characterization of Bis(2-oxoimidazolyl)hydroborato Complexes: A New Class of Bidentate Oxygen-Donor Ligands

Ahmed Al-Harbi, Yi Rong, and Gerard Parkin*

Department of Chemistry, Columbia University, New York, New York 10027, United States

Supporting Information

ABSTRACT: A new class of bidentate ligands that feature oxygen donors, namely, the bis(2-oxo-1-*tert*-butyl-imidazolyl)hydroborato and bis(2-oxo-1-methylbenzimidazolyl)-hydroborato ligands, $[Bo^{Bu'}]$ and $[Bo^{MeBenz}]$, have been synthesized via the reactions of MBH₄ with 2 equiv of the respective 2-imidazolone. Chelation of $[Bo^{Bu'}]$ and $[Bo^{MeBenz}]$ to a metal center results in a flexible eight-membered ring that is capable of adopting a "boatlike" conformation that allows for secondary M···H–B interactions.

B identate $[O_2]$ donor ligands that belong to the X₂, LX, and L₂ covalent bond classifications¹ are known for a variety of systems. For example, κ^2 -carboxylate and κ^2 -acetylacetonate are two commonly encountered LX donor ligands that respectively result in four- and six-membered rings upon coordination. Here, we introduce a new class of $[O_2]$ LX donor ligands that incorporate oxoimidazolyl moieties and create an eightmembered chelate ring.

We have previously described the construction of bis-(mercaptoimidazolyl)hydroborato $[Bm^R]^2$ and bis-(selenoimidazolyl)hydroborato $[Bse^R]^3$ ligands that respectively feature $[S_2]$ and $[Se_2]$ donor arrays, of which the former has found widespread applications.⁴⁻⁶ We have now extended this series of chalcogen donor ligands to that of the lightest member and report here the synthesis of the $[O_2]$ donor counterpart, namely, the bis(oxoimidazolyl) ligand system, $[Bo^R]$ (Scheme 1). Specifically, $[Bo^{Bu'}]M$ (M = Li, Na) and $[Bo^{MeBenz}]Na$ may be obtained by the reactions of MBH_4 (M = Li, Na) with 2 equiv of the respective 2-imidazolone (Scheme 1), an approach that is a modification of the method used for the synthesis of tris(oxoimidazolyl)hydroborato ligands.⁷

The molecular structures of several of these derivatives, namely, mononuclear $[Bo^{Bu'}]Na(diglyme)$ and dinuclear $\{[Bo^{Bu'}]Li\}_2$, $\{[Bo^{Bu'}]Na\}_2(diglyme)$, and $\{[Bo^{MeBenz}]Na-(diglyme)\}_2$, have been determined by X-ray diffraction. In all compounds, the $[Bo^R]$ ligands chelate to the metal, forming an eight-membered ring;⁸ for the dinuclear compounds, one of the oxygen atoms also serves as a bridge between the two metal centers, thereby resulting in an $[M_2O_2]$ core.⁹

The alkali-metal complexes, $[Bo^R]M$, are useful ligandtransfer reagents for the synthesis of other derivatives. For example, the treatment of $\{[Bo^{Bu'}]Li\}_2$ with TlOAc gives $[Bo^{Bu'}]Tl$ (Scheme 2), which has been structurally characterized by X-ray diffraction, as illustrated in Figure 1. Notably, Scheme 1. Synthesis of $[Bo^R]M$ (M = Li, Na) Derivatives

Scheme 2. Synthesis of [Bo^R]M (M = Tl, Cu, Zn) Derivatives

 $[Bo^{Bu'}]Tl$ exists as a discrete mononuclear complex, in marked contrast to the dinuclear structure of the sulfur counterpart, $\{[Bm^{Bu'}]Tl\}_2$, in which one of the sulfur atoms of the $[Bm^{Bu'}]$ ligand bridges the two thallium centers.⁶ Furthermore, the methyl-substituted derivative $\{[Bm^{Me}]Tl\}_{\infty}$ is polymeric with bridging mercaptoimidazolyl groups.^{2a} The coordination geometry of thallium in $[Bo^{Bu'}]Tl$ is also supplemented by a secondary Tl···H–B interaction, which is associated with a

```
Received: June 28, 2013
Published: August 30, 2013
```


Figure 1. Molecular structure of [Bo^{Bu^t}]Tl.

"boatlike" conformation of the $[Bo^{Bu'}]$ ligand that allows the B–H group to be in the proximity of the metal center. As such, the coordination geometry more resembles that of the bis(pyrazolyl)hydroborato counterparts, $[Bp^R]Tl_1^{10}$ than that of $\{[Bm^R]Tl\}_{x}$. It is also pertinent to contrast the mononuclear structure of $[Bo^{Bu'}]Tl$ with thallium(I) acetylacetonate derivatives, $Tl[acac^{R_2}]$, which exhibit a variety of intermolecular interactions.¹¹

The zinc iodide compound, {[Bo^{MeBenz}]ZnI}₂, may be obtained via the reaction of [Bo^{MeBenz}]Na with ZnI₂ (Scheme 2). The molecular structure of {[Bo^{MeBenz}]ZnI}₂ has been determined by X-ray diffraction, thereby demonstrating that the compound is dinuclear by virtue of an oxygen atom of each [Bo^{MeBenz}] ligand bridging the two zinc centers. Although this dinuclear structure is in marked contrast to that of the monomeric mercapto counterpart, [Bm^{Me}]ZnI,^{2a,b} it is similar to that of the selenium analogue, {[Bse^{Me}]ZnI}₂.^{3a,12} The overall coordination geometry about zinc can be described as a trigonal bipyramid in which the axial sites are occupied by a bridging oxygen atom and a hydrogen of the 3-center-2-electron Zn···H–B interaction ($d_{Zn···H} = 1.97$ Å and $d_{Zn···B} = 2.85$ Å).

The [Bo^{MeBenz}] ligand is also effective for coordinating gallium, including formation of a compound that features a Ga–Ga bond. Specifically, [Bo^{MeBenz}]Na reacts with (i) GaI₃ to give [Bo^{MeBenz}]GaI₂ and (ii) "Gal"¹³ to give dinuclear {[Bo^{MeBenz}]GaI₂ (Scheme 3). The latter transformation is formally accompanied by disproportionation, in accordance with the previously reported reactivity of "Gal".^{4b,13}

The molecular structures of $[Bo^{MeBenz}]GaI_2$ and $\{[Bo^{MeBenz}]-GaI\}_2$ (Figure 2) have been determined by X-ray diffraction. A noteworthy feature of both structures is that the $[Bo^{MeBenz}]Ga$ moieties adopt a "boatlike" conformation, whereas those for $[Bm^R]Ga$ in the mercapto counterparts, $[Bm^R]GaI_2$ and $\{[Bm^R]GaI\}_2$, are "chairlike".^{4b} Another notable difference between the structures of $\{[Bo^{MeBenz}]GaI\}_2$ and $\{[Bm^R]GaI\}_2$ is that, whereas the two $[Bm^R]GaI$ moieties of the latter adopt a trans conformation, the two $[Bo^{MeBenz}]GaI$ moieties adopt an approximately eclipsed conformation in which the I–Ga–Ga–O torsion angles are 18.9° and 20.8° . Furthermore, the I–Ga–Ga–I torsion angle is 101.9° , in contrast to a value of 180° for $\{[Bm^R]GaI\}_2$.^{4b} Despite this conformational difference, however, the Ga–Ga bond length for $\{[Bo^{MeBenz}]GaI\}_2$ [2.3995(6) Å] is comparable to the values in the mercapto counterparts, $\{[Bm^{Bu'}]GaI\}_2$ [2.423(2) Å] and $\{[Bm^{Me}]GaI\}_2$ [2.414(2) Å].^{4b}

Figure 2. Molecular structure of $\{[Bo^{MeBenz}]GaI\}_2$.

Significantly, $[Bo^{MeBenz}]GaI_2$ and $\{[Bo^{MeBenz}]GaI\}_2$ can be interconverted. Thus, the Ga–Ga bond of $\{[Bo^{MeBenz}]GaI\}_2$ can be cleaved by I_2 to give $[Bo^{MeBenz}]GaI_2$, while $\{[Bo^{MeBenz}]GaI\}_2$ can be regenerated by the treatment of $[Bo^{MeBenz}]GaI_2$ with KC₈ (Scheme 3).

Finally, we note that not only is the $[Bo^R]$ ligand applicable to main-group chemistry, but it is also of use in transition-metal chemistry. For example, the treatment of [BoMeBenz]Na with [Me₃PCuCl]₄ yields [Bo^{MeBenz}]Cu(PMe₃). The molecular structure of $[Bo^{MeBenz}]Cu(PMe_3)$ has been determined by X-ray diffraction, thereby demonstrating that the approximately trigonal-planar primary coordination sphere is supplemented by a Cu···H–B interaction ($d_{Cu···H} = 1.81$ Å and $d_{Cu···B} = 2.78$ Å) that is similar to that in the mercapto counterpart, [Bm^{MeBenz}]-Cu(PMe₃) ($d_{Cu\cdots H} = 1.90$ Å and $d_{Cu\cdots B} = 2.75$ Å).^{2c} The principal differences between the structures of $[Bo^{MeBenz}]Cu-(PMe_3)$ and $[Bm^{MeBenz}]Cu(PMe_3)$ are that (i) the $[O_2CuP]$ core deviates more from planarity than does the [S₂CuP] core, as is evidenced by the respective sum of the E-Cu-E and E-Cu-P angles in [Bo^{MeBenz}]Cu(PMe₃) (350.6°) and [Bm^{MeBenz}]-Cu(PMe₃) (355.8°), and (ii) the difference in the two P-Cu-O bond angles (15.3°) is considerably greater than the difference in the two P-Cu-S bond angles (2.0°). Neglecting the Cu···H–B interaction, coordination of the $[Bo^{MeBenz}]$ ligand to copper in $[Bo^{MeBenz}]Cu(PMe_3)$ resembles that of the β -diketonate ligands in $[acac^{R_2}]Cu(PR'_3)$,¹⁴ with both classes having O–Cu–O bond angles that are close to 90°. The Cu–O bond lengths in $[Bo^{MeBenz}]Cu(PMe_3)$ [2.017(2) Å and 2.073(2) Å] are, however, slightly longer than those of $[acac^{R_2}]Cu(PR'_3)$, e.g., $[acac^{(CF_3)_2}]Cu(PMe_3)$ [1.990(8) Å and 2.034(7) Å].¹⁴

A comparison of the structures of the { $[Bo^R]M$ } complexes allows several observations to be made: (i) the C–O bonds are only slightly longer than those of the respective oxoimidazole;¹⁵ (ii) in situations where one of the oxygen donors bridge two metal centers, the M–O_{bridge} bonds are slightly longer than the corresponding M–O_{term} bonds; (iii) the eight-membered ring is flexible, a feature that allows the B–H moiety to adjust its position to accommodate a 3-center-2-electron M···H–B interaction if so required to supplement the bidentate [O_2] coordination. For example, the M···B distances vary from 2.78 Å for [Bo^{MeBenz}]Cu(PMe₃) to 3.41 Å for [Bo^{But}]Tl (Table 1).

Table 1. Selected Metrical Data for [Bo^R]M Complexes^a

	$d(M-O_{term})/Å$	$d(\mathbf{M}\cdots\mathbf{B})/A$	$\dot{A} \Delta d/\dot{A}^b$
[Bo ^{MeBenz}]Cu(PMe ₃)	2.05	2.78	0.73
${[Bo^{MeBenz}]ZnI}_{2}$	1.96	2.85	0.89
[Bo ^{Bu^t}]Tl	2.51	3.41	0.90
[Bo ^{Bu'}]Na(diglyme)	2.25	3.20	0.95
${[Bo^{Bu^t}]Li}_2$	1.83	2.81	0.98
${[Bo^{MeBenz}]Na(diglyme)}_2$	2.32	3.35	1.03
${[Bo^{MeBenz}]GaI}_2$	1.90	3.32	1.42
$[Bo^{MeBenz}]GaI_2$	1.86	3.40	1.54
^{<i>a</i>} Average values listed wh $d(M-O_{term})$.	ere appropriate.	$b\Delta d = d$	$d(M \cdots B) -$

A simple gauge of the significance of these M···H–B interactions (Δd) can be obtained by comparing the M···B distance relative to the average terminal M–O distances, i.e., $\Delta d = d(M \cdots B) - d(M - O_{\text{term}})$. On this basis, the most significant M···H–B interaction is for [Bo^{MeBenz}]Cu(PMe₃) ($\Delta d = 0.73$ Å), while the least significant is for [Bo^{MeBenz}]GaI₂ ($\Delta d = 1.54$ Å). Indeed, the latter is to be expected because, in the absence of any interaction with the B–H group, the gallium centers of [Bo^{MeBenz}]GaI₂ are four-coordinate, a common situation for gallium.¹⁶

In summary, a new class of bidentate LX ligands that feature two oxygen donors, namely, $[Bo^R]$, have been synthesized via the respective reactions of MBH₄ with 2 equiv of 1-*tert*-butylimidazolone and 1-methyl-2-benzimidazolinone. The $[Bo^R]$ ligands are versatile and are able to coordinate to both main-group and transition metals. Unlike for related $[acac^{R_2}]$ ligands, chelation of the $[Bo^R]$ ligand results in the formation of a flexible eight-membered ring that is capable of adopting a "boatlike" conformation, thereby allowing for a range of secondary $M \cdots H-B$ interactions to accommodate the nature of the metal center.

ASSOCIATED CONTENT

S Supporting Information

Experimental details, crystallographic data (CIFs), and Cartesian coordinates for geometry-optimized structures. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: parkin@columbia.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Science Foundation (Grant CHE-1058987) for support of this research. A.A.-H. thanks the government of Saudi Arabia for a scholarship. Victoria Landry is thanked for assistance.

REFERENCES

(1) Green, M. L. H. J. Organomet. Chem. 1995, 500, 127-148.

(2) (a) Kimblin, C.; Bridgewater, B. M.; Hascall, T.; Parkin, G. J. Chem. Soc., Dalton Trans. 2000, 891–897. (b) Kimblin, C.; Hascall, T.; Parkin, G. Inorg. Chem. 1997, 36, 5680–5681. (c) Al-Harbi, A.; Rong, Y.; Parkin, G. Dalton Trans. 2013, 42, 11117–11127.

(3) (a) Landry, V. K.; Buccella, D.; Pang, K.; Parkin, G. Dalton Trans. 2007, 866–870. (b) Landry, V. K.; Parkin, G. Polyhedron 2007, 26, 4751–4757.

(4) (a) Kimblin, C.; Bridgewater, B. M.; Hascall, T.; Parkin, G. *Dalton Trans.* **2000**, 1267–1274. (b) Yurkerwich, K.; Coleman, F.; Parkin, G. *Dalton Trans.* **2010**, *39*, 6939–6942.

(5) See, for example, ref 2c, references cited therein.

(6) Alvarez, H. M.; Gillespie, P. A.; Gause, C. D.; Rheingold, A. L.; Golen, J. A.; Rabinovich, D. *Polyhedron* **2004**, 23, 617–622.

(7) Al-Harbi, A.; Sattler, W.; Sattler, A.; Parkin, G. Chem. Commun. 2011, 47, 3123–3125.

(8) For other examples of LX $[O_2]$ donor ligands that form eightmembered rings, see: (a) Pettinari, C.; Marchetti, F.; Pettinari, R.; Martini, D.; Drozdov, A.; Troyanov, S. J. Chem. Soc., Dalton Trans. **2001**, 1790–1797. (b) Tsai, C. Y.; Li, C. Y.; Lin, C. H.; Huang, B. H.; Ko, B. T. Inorg. Chem. Commun. **2011**, 14, 271–275.

(9) This type of bridging mode has been observed previously in $[Bm^R]$ systems. See, for example, ref 2.

(10) (a) Dowling, C.; Ghosh, P.; Parkin, G. Polyhedron 1997, 16, 3469–3473. (b) Ghosh, P.; Rheingold, A. L.; Parkin, G. Inorg. Chem. 1999, 38, 5464–5467. (c) Fillebeen, T.; Hascall, T.; Parkin, G. Inorg. Chem. 1997, 36, 3787–3790.

(11) Fernández, E. J.; Laguna, A.; López-de-Luzuriaga, J. M.; Monge, M.; Montiel, M.; Olmos, M. E.; Pérez, J. *Organometallics* **2004**, *23*, 774–782, and references cited therein.

(12) An interesting difference between the structures of $\{[Bo^{MeBenz}]$ ZnI $_2$ and $\{[Bse^{Me}]ZnI\}_2$ is that the two pairs of Zn–O bond lengths pertaining to the $[Zn_2O_2]$ core of $\{[Bo^{MeBenz}]ZnI\}_2$ [2.008(2) and 2.201(2) Å; Δ = 0.193 Å] are much more similar than the two pairs of Zn–Se bond lengths in $\{[Bse^{Me}]ZnI\}_2$ [2.452(1) and 2.826(1) Å; Δ = 0.374 Å].^{3a} This trend is in accordance with density functional theory calculations on $\{[Bo^{MeBenz}]ZnI\}_2$ (0.083 Å, average value) and $\{[Bse^{Me}]ZnI\}_2$ (0.415 Å, average value).

(13) Baker, R. J.; Jones, C. Dalton Trans. 2005, 1341-1348.

(14) See, for example: Shin, H. K.; Chi, K. M.; Farkas, J.; Hampden-Smith, M. J.; Kodas, T. T.; Duesler, E. N. *Inorg. Chem.* **1992**, *31*, 424–431.

(15) Rong, Y.; Al-Harbi, A.; Kriegel, B.; Parkin, G. Inorg. Chem. 2013, 52, 7172–7182.

(16) Hutchison, A. R.; Mitra, A.; Atwood, D. A. Main Group Chem. 2005, 4, 187–200.